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Abstract

The computational complexity for parallel implementation of multidomain

spectral methods is studied to derive the optimal number of subdomains, q, and

spectral order, n, for numerical solution of hyperbolic problems. The complex-

ity analysis is based upon theoretical results which predict error as a function

of (q, n) for problems having wave-like solutions. These are combined with a
linear communication cost model to study the impact of communication over-

head and imposed granularity on the optimal choice of (q, n) as a function of

the number of processors. It is shown that, for present day multicomputers,

the impact of communication overhead does not significantly shift (q, n) from

the optimal uni-processor values, and that the effects of granularity are more

important.
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1 Introduction

We examine the computational efficiency for parallel solution of a hyperbolic partial

differential equation in d-space dimensions and time on f_ = [-1, 1] d x [0, _-]. We

consider a class of model problems in which temporal discretization is assumed to

be based upon an explicit marching procedure and spatial discretization is based

upon a spectral subdomain approach with Q subdomains, each having order of ap-

proximation n in each spatial direction. The choice of Q and n is determined by

the dual constraints that the discretization error must be below a certain level, and

that the computational time should be minimized. This optimization problem has

been previously analyzed for the uni-processor case [1]. Here, we consider the im-

pact of non-uniform memory access times imposed by parallel distributed memory

architectures.

Examples of architecture and discretization dependent computational cost anal-

yses have also been presented in [2, 3, 4, 5]. Keller and Schreiber [2] study the costs

for parameter continuation of steady-state Navier-Stokes calculations on vector super-

computers with a cost-functional that incorporates both CPU and memory charges,

and with the principal independent parameter being the frequency of full-Newton

vs. chord continuation steps. Chan and Shao [3] study the question of the optimal

number of subdomains for the solution of elliptic problems via domain decomposition

based iterative solvers. In that study, a subdomain defines the support of local block

preconditioners and corresponding coarse-grid operators, rather than redefining the

underlying discretization. R_nquist [4] examines the trade-off between number of

subdomains and local approximation order for the spectral element method applied

to serial solution of model elliptic problems. Fischer and Patera [5] provide both

theoretical and experimental performance analysis for the spectral element method

on hypercubes.

In the present study, we use an explicit error estimate for hyperbolic problems

having wave-like solutions as derived by Gottlieb and Wasberg [1] to determine the

optimal discretization for a tensor-product based model problem on distributed mem-

ory architectures. Although fairly simple, this model embodies many essential dis-

cretization/architectural details which must be considered in designing an algorithm

for modern day supercomputers. These include: the trade off between high- and

low-order accuracy discretizations, with compensating resolution to maintain a fixed

accuracy; the cost of non-local memory accesses, accounted for by a message-passing

model; and the imposition of a fixed granularity due to the fact that P processors

are employed in the simulation. It should be noted that, in contrast to high-order

finite difference schemes, the spectral subdomain approach is in fact a heterogeneous

discretization in the sense that partitioning the domain along subdomain boundaries

induces far less communication than would arise if the subdomains themselves were

subdivided. This heterogeneity is well suited to computer architectures exhibiting a

two-tiered (local, and non-local) memory access cost.



2 A Hyperbolic Model Problem

As a model problem, we consider the d-dimensional convection equation on 12 --

[-1, 1]d x [0, T] given by:

o¢ + v.,us, = 1(_-, t)
Ot

¢(i,0) = ¢0(_),

(1)

where the unknown, ¢, is a scalar convected with a given velocity field, /J(:_, t), and

f is a known forcing function. Appropriate boundary conditions are assumed on each

face of the domain - the details are not important to the cost analysis considered here.

We assume that (1) is discretized in time via an explicit time-marching procedure

requiring only local vector updates and no system solves to advance the solution at

each step.

Spatial discretization is based upon a spectral subdomain approach. Let Q = qd

be the total number of subdomains, and N -- n d be the number of points within

each subdomain; q and n are the number of subdomains and points (order of approx-

imation) in each spatial direction, respectively. The total number of grid points is

therefore QN = (qn) d. The d-dimensional domain is constructed as a tensor prod-

uct of one-dimensional partitions of [-1, 1]. We assume a uniform partition in each

direction, yielding, e.g., a q x q array of (n x n) squares in two dimensions. Note

that in the limit, n _ 1, we recover a low-order finite difference or finite element

approximation. In the other extreme, q _ 1, we recover a spectral discretization.

The discretization leads to an evolution equation of the form:

,1 [ l2_+1 = 2, + Z Z, v. + g*-' (2)
i=0

Here, underscore denotes vectors of basis coefficients, V is the discrete divergence

operator, _ is the vector of fluxes: {_F}j = Ujb/, j = 1,..., QN, and the _3i's denote

the coefficients for an lth-order time stepping scheme (e.g. [6]). More stable Runge-

Kutta schemes can be accommodated without significantly altering the computational

complexity.
We assume that within each subdomain, derivatives are evaluated via application

of a one-dimensional derivative matrix in a tensor-product fashion, e.g., in IR3,

-- -_ [Iz @Iy @D_]F__

where I v and Iz are the (n x n) identity matrices and Dx is the (n x n) differentiation

matrix which may be derived from a collocation method or high-order finite difference

method. In spectral subdomain methods the derivatives at the interfaces are, in

effect, evaluated with nonsymmetric stencils. To maintain continuity of the solution,

information needs to be propagated across subdomain boundaries. Stability and nth-

order accuracy (i.e., exponential with n) can be achieved just by propagating surface

function values across the interface; higher derivatives or additional stencil values do

not need to be shared across the interface [7]. Consequently, the communication cost



is essentiallythe sameasthat for a low-orderscheme,i.e., proportional to the surface
areaof the subdomain,and not to the volume.

For the model problem(2) the spatial truncation error is governedby the choice
of discretizationfor thegradient operator. For solutionsexhibiting wave-likebehavior
with maximum wavenumberk, the spectral subdomain discretization leads to an error

estimate of the form [1]:

error = \ _qn ] (3)

Two possible convergence strategies ensue. One can increase the number of subdo-

mains, leading to algebraic convergence of order n, or increase the approximation

order within each subdomain, leading to exponential convergence.

Throughout the remainder of the paper, we assume that the error is constrained

to a user specified value, i.e., we require

e-'
2-_] -< ' (4)

and seek to minimize computational cost (time) subject to the constraint that c is

fixed. Note that for fixed error e, an increase in approximation order (n) implies a

decrease in the number of subdomains (q), and vice-versa. This result derives directly

from the error constraint (4) independent of the subsequent computational complexity

analysis. Moreover, for e fixed, an increase in n also implies a decrease in the number

of grid points, QN, though not necessarily a reduction in the total work.

3 Computational Complexity

We consider the implementation of the model problem (2) on a distributed memory

MIMD parallel architecture. The programming model is based upon the single pro-

gram, multiple data (SPMD) paradigm; each processor is assumed to have its own

private address space and non-local memory is accessed via explicit message passing.

Letting P = pd be the total number of processors to be employed, we assume that the

subdomains can be integrally mapped onto the processors in each direction, implying

that q = rap, m a positive integer. The discretization on each processor therefore

consists of an m _ array of blocks, with each block containing an nth-order spectral

discretization based, e.g., on tensor-product Chebyshev polynomials of degree n.

W'e assume that the communication time is not "covered" by computation, i.e.,

that arithmetic operations do not take place simultaneously with communication.

The P-processor solution time Tp is therefore the sum

Tp = + Tc, (5)

where T_ and Tc denote the arithmetic and communication components, respectively.

The optimal number of subdomains is determined by minimizing Tp subject to the

error tolerance constraint (4).

Advancement of the solution (2) requires several vector-vector updates, each

with an operation count O(QN) = O(qdnd). In additioni the discrete divergence



operator requiresonederivativeevaluationin eachof d spatial directions. Because of

the tensor product form of the bases, the operation count for each nth-order derivative

evaluation scales as O(d qdnd+X) for matrix-matrix product based differentiation, and

O(dq_n d log n) for fast-transform approaches. We denote the combined work estimate

as:

Afovs = A qdnd+_ ,

with 0 < _ < 1. Here, A(d) is a small parameter proportional to d 2 but independent of

q and n. The non-integer exponent "_ provides the flexibility to account for the lower

order terms in the operation count and for the fact that, even in the matrix-matrix

product case, the time for the leading order term will typically scale less rapidly than

the O(n d+l) operation count as vector performance generally improves with increasing

Ft.

Aside from the interface data exchanges, full parallelism is attained for the vector

update (2), yielding a per-step arithmetic time complexity of:

qdnd+_

T_ = A----fi--ta , (6)

where ta is the (average) time required for a single arithmetic operation such as

multiplication or addition. For matrix-matrix product based differentiation, ta will

be close to the processor clock-cycle time, as good use is made of local memory

hierarchies (i.e., cache). For fast-transform approaches, ta will be significantly larger.

However, for sufficiently large n, this is clearly balanced by the O(n log n) complexity.

In the multi-processor implementation, communication is required at each time-

step to update edge values shared by adjacent subdomains. For most modern message

passing parallel computers, an appropriate model of contention-free communication

is given by the linear function:

t_omm[w] = ((_ + _w)ta .

Here, tcomm[W] is the time required to transmit an w-word message from one processor

to another, c_ and/3 are non-dimensional constants representing message start-up time

(latency) and asymptotic per-word transfer time, respectively. In appropriate units,

is the inverse of the communication bandwidth. For the d-dimensional model problem,

each processor transmits

words per step, where d _< B _< 2d is a parameter which is dependent on the prob-

lem and possibly varying from one subdomain to the next. If the local convection is

predominantly in one direction, information will flow from only d faces of each sub-

domain, rather than from each of the 2d faces present on each subdomain. We will

consider the suboptimal case where information must propagate in each direction.

In addition to the face data, there is also O(n e-x) ... O(1) edge and vertex data

which must be communicated. Although of a lower-order than the principal face data

which, these terms cannot be ignored because latency effects keep communication time

4



from goingto zeroasthe messagesizedecreases.However,wedonot directly account
for theselowerorder terms in the presentmodel for the following reasons.First, for
a d-dimensional tensor product geometry such as employed here, it is possible to

properly exchange the lower-order values in the course of exchanging the 2d faces

without any extra communication (see, e.g., [5]). Second, in cases where the mesh

topology does not permit such efficiencies, it is unlikely that the choice of the optimal

(q, n) pair will be strongly influenced by the edge exchanges; they generally comprise

short messages dominated by latency costs which are independent of (q,n). We

reconsider this point in the results section.

Denoting the total communication cost as To, we have:

r c = (1 - (_lp)(Ta + T_) ,

where the Kronecker delta term, (1 - (_lp) aCCOUnts for the absence of communication

in the uni-processor case. Here,

To = Bata (7)

is the latency term, and

B(qn)a-13t_ (8)
T_ = pd-1

is the bandwidth component.

Combining (6-8), the P-processor solution time is:

[ qdnd+e (B (qn)d-1 Ba) (1-Tp = t_ [A -_j + k, _ fl + 51p)]
(9)

It is clear that, for fixed problem size, (q, n), latency becomes the dominant factor

in loss of parallel efficiency as p ---+ oc. However, the latency term has no (q, n)-

dependence and therefore does not influence the optimal discretization choice.

4 Cost Analysis

We now consider the problem of finding a discretization pair (q, n) which minimizes

Tp subject to the error tolerance constraint (4). Clearly, since To is independent of q

and n, we need only consider the sum of T_ and Tz.

The dimension of the parameter space (q, n) can be reduced from two to one by

using the constraint (4) to solve for qn in terms of n:

eTrke_ (10)
qn = 2

Substituting this into (6) and (8)"

T_ = taA (e_rke_ _ dn_
k. 2p ]

d-I

= toZB(e ke: )\ 2p

(11)

(12)



Differentiating with respectto n leads to

d 7n - edT, _Ta = n_

d (1 - d)e
_nT_ = ni Tz

(13)

(14)

Equating the sum of (13) and (14) to zero, we find:

= [d + (1 - (_ip)(d- 1) , (15)nopt

where the Kronecker delta term has been incorporated to reflect the uni-processor

case.

Note that (15) is an implicit equation for nopt, as T,_ and T_ are dependent

on n. However, for the parameters under consideration, the ratio Tz/Ta is not a

strong function of n, and a fixed-point iteration in the neighborhood of n ._ nopt

typically converges in one or two iterations. Consequently, the structure of (15)

reveals much of the expected behavior of nopt. For example, when/3 is small or d = 1,

the communication cost is negligible and we recover the optimal order for the serial

_ _d In this case, the optimal order increases (and correspondingly, thecase, nopt, - _.
number of subdomains decreases) with increasing spatial dimension, d, decreasing

error tolerance, e -_, or decreasing spectral overhead cost, 7. It is interesting to note

that under these circumstances, the optimal choice of n is independent of k, and from

(4) we conclude that the optimal number of subdomains, qopt, is proportional to the

maximum resolvable wave-number, k.

In the general case. an explicit formula for nopt can be derived by setting z =

and substituting into (15). Using (11-12), we can derive an equation in which the

_1 d - 1 f3B 2p e- _ (16)e z

7 A eTck

z-dependence is explicit:

It can be shown that f(z) is monotonically increasing, from which we conclude that

there is an increase in nopt whenever the right hand side of (16) increases. Thus, an

increasing number of processors, P = pal, or increasing communication cost, 13--_, leads

to an increase in the optimal order of approximation, and corresponding decrease in

the optimal number of subdomains, subject to the constraint that both be integers.

5 Results

In this section, we examine the parameters which influence (qopt,nop_) in a multi-

processor implementation. Both two- and three-dimensional problems are considered,

Table 1: Problem, algorithm, and hardware parameters.

d k e-_ 7 A B a /3 t_

2,3 16,32 10-2,10 -6 0.75 4d 2 4d 1000 10 10-Ss



with maximum resolvablewave numbers of k = 32, and 16, respectively. These,

along with the specified error tolerance, specify the characteristics of the physical

problem. The algorithmic characteristics have been selected to reflect a matrix-matrix

product based approach to differentiation, i.e., with a fairly low constant A and

relatively high exponent % The multipler d in the communication term B reflects

the fact that information is propagated in each of d spatial dimensions whenever the

linear convection operator is applied. The hardware parameters are representative of

dedicated parallel architectures. The nondimensional communication characteristics

c_ and _ are derived from tests described in Appendix A. For networks of workstations,

the latency term, a, would generally be much higher. While this impacts the overall

parallel efficiency, it would not impact the optimal discretization, as noted earlier.

All the results scale directly with the floating point cycle time ta. However, to give

the times a realistic scale, t_ is set to 10 -s seconds, corresponding to a nominal

performance of 100 MFLOPS per node. Table 1 summarizes the baseline parameters.

The impact of communication overhead is illustrated in Table 2. Values of

(qopt, nopt) computed from (15) and (10), along with model estimates of time per

step, Tp, are shown for P = 1 to 4096. In order to highlight the slight variations in

(qopt, nopt) the values have not been rounded up to the nearest integer. In addition,

we have momentarily relaxed the constraint q = mp; the impact of granularity is

examined below.

The results of Table 2 indicate that communication overhead TZ has strikingly

little effect on the value of qopt. The case (d - 2, e -_ - 10 -_) is the only one which

exhibits notable (20 %) variation in qopt. Even if the communication/computation

ratio is artificially increased by halving 7, or doubling _, the results are little changed.

Note that if it is necessary to communicate data on the edges in addition to the faces,

an approximate bound on the number of words transferred is 36_ in IR3 (twelve edges

of length q_ to three processors each). For optimal values of (q, n), this is significantly
P

below the amount of face data transferred (6 (p_)2) and we conclude that the edge

data has little influence on the optimal discretization. Finally, note that increasing

the physical complexity by increasing k simply causes a proportional increase in qovt,

and no change in nopt.
It is useful to examine the sensitivity of solution time to the choice of (q, n).

Fig. 1 shows the normalized time-per-step, PTp, versus n for error criteria 10 -3,

10 -6, and 10 -9, with P -- 1,4, 16,64, and 256. These results were computed using

(9) in conjunction with (10). In this case, a was set to zero, simply to allow the

multi-processor results to collapse onto a single curve, and to highlight the influence

of the remaining communication term. Also shown are the values of PTp when q is

restricted to be an integer, i.e.,

(17)
q= I -I

These are seen in Fig. 1 as the jagged counterparts to the smooth curves derived

directly from (9-10). The fact that the multi-processor curves lie on top of one

another implies near unity efficiency, i.e., tl/(Ptp) _ 1, which would be the case if

the latency were in fact zero. The most striking feature of Fig. 1 is that the continuous

(q, n)[¢ curves exhibit a broad minimum, especially for smaller error tolerance, error =



e-_. By contrast, the time for the discrete (q,n) pairs exhibits large fluctuations,

particularly as q nears unity. To exploit the broad minima of the continuous results,

it is best to choose q > qopt, with appropriate n, in order to minimize deviation from

the optimal solution times.

The results presented so far appear to indicate that parallelism has little influence

on the discretization pair (q, n). In fact, a fundamental constraint which has not been

imposed in the previous model problems is that the number of subdomains, Q, be

an integral multiple of the number of processors, P. The combined influences of this

imposed granularity, nonzero latency, and suboptimal (q, n) pairs are shown in Fig.

2. The solution time versus number of processors is plotted for the two-dimensional

baseline case (Table 1) with error criteria e -_ = 10 -3 and 10 -6. Four values of n are

considered: a fixed (arbitrary) value of n = 4, the optimal serial case, n = n_ts, the

optimal parallel case, n -- nopt, and the value of n obtained if q = p, i.e., corresponding

to one subdomain per processor.

For this problem, the low-order (n --- 4) case requires significantly more time than

the other cases. The optimal curves, which are essentially indistinguishable, exhibit

significant deviation from linear speed up for P > 256, due to latency. However, for

P > 64, the optimal number of subdomains, qop_, is less than p, implying that the

analytically derived optimal performance cannot be obtained in this regime. Instead,

the number of subdomains must be set equal to P, and the performance must track

the q -- p > qopt curve. Thus, imposed granularity is an additional contributor

to inefficiency. We note that, in practice, this source of inefficiency might not be

encountered since it is common to increase the number of processors with increasing

physical complexity and problem size, resulting in "scaled" speed-up, as noted in [8].

Since qopt scales almost directly with physical complexity (k), it should be possible to

maintain q ._ qopt in the scaled speed-up case.

Table 2: Optimal discretization pairs and time-per-step (s)

d k P p

2 32 1 1

2 32 4 2

2 32 16 4

2 32 64 8

2 32 256 16

2 32 1024 32

2 32 4096 64

3 16 1 1

3 16 8 2

3 16 64 4

3 16 512 8

3 16 4096 16

e-_ = 10 -2

qopt nopt Tp

11.9 12.3 2.2×10 -2

11.8 12.3 5.7×10 -3

11.7 12.4 1.5×10 -3

11.6 12.5 4.1×10 -4

11.3 12.8 1.3×10 -4

10.7 13.3 6.6×10 -5

9.8 14.2 4.7×10 -_

3.5 18.4 8.6×10 -1

3.5 18.6 1.1×10 -1

3.4 18.7 1.4×10 -2

3.4 19.0 1.8×10 -3

3.3 19.5 2.9×10 -4

e-, = 10-6

4.0 36.8 5.1 ×10 -2

4.0 36.9 1.3xlO -2

3.9 37.0 3.3×10 -3

3.9 37.2 8.5 xlO -4

3.9 37.5 2.5 xlO -4

3.8 38.2 9.4 ×10 -5

3.6 39.5 5.4×10 -5

1.2 55.3 2.0

1.2 55.4 2.5>(10 -1

1.2 55.6 3.1×10 -2

1.1 56.0 4.0xlO -3

1.1 56.7 5.6x10 -4

qopt 7top t Tp



6 Conclusions

Analytical error estimates derived in [1] have been used in conjunction with com-

putational complexity estimates for parallel spectral subdomain algorithms to derive

optimal discretization parameters for time-explicit numerical solution of hyperbolic

partial differential equations. Communication overhead increases the optimal ap-

proximation order, nopt, over that derived for the serial case. However, for realistic

multicomputer parameters, the change is typically small. Moreover, because the opti-

mal solution time exhibits a broad minimum about nopt, while the achievable solution

time (due to integral constraints on q and n) exhibits large amplitude fluctuations

for large n, there is incentive to choose n < nopt. The most significant impact of

parallelism upon the choice of (q, n) is that it may potentially impose a granularity

upon the discretization which is suboptimal, i.e, q = p > qopt.

100

10 -1

,trot = 10 -9

10-3

I_-2 iiiilliIIIlrllI_ _I1111il]l_rIIIIIlIIIIIIIIi[IIIIIIEIIIlIIIIlII_IfIIIj

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Figure 1: Normalized time per step for two-dimensional problem with _ = 0.



Appendix A: Communication parameters

We assume that contention free messages consisting of m words have a point-to-point

travel time given by:

t o m(m) = + Zm)to

The model does not account for distance between processors. However, for most

modern message passing systems, any fluctuation in latency due to greater wire sep-

aration between processors is so overwhelmed by other sources of latency as to be

immeasurable.

The values of c_ and/3 are measured via the following point-to-point or "ping-

pong" test. For each processor pair, (0, k), k = 2i - 1, i = 1,..., log2 P, the processors

synchronize and commence timing. Processor 0 then sends an m-word message to

processor k, and immediately posts a blocking receive. Processor k posts a blocking

receive, and upon receipt of the message from node 0, sends an m-word segment of a

different array back to 0. This continues for fifty iterations, each message sent from

and placed into different memory locations in order to avoid unduly favorable cache

behavior. Fig. A shows the measured round-trip message times, trt = 2 (a+_m)ta, for

the 512-node Intel Delta at Caltech, the 340 node Intel Paragon at Wright-Patterson

AFB, and the 20-node IBM SP2 at Brown University using the mp±ch message passing

library from Argonne National Labs.

Estimates of ta are derived from MFLOPS measurements for computation/memory-

access patterns which are typical of the computations under consideration. In this

case, the work is dominated by matrix-matrix products of order n, which have favor-

able caching patterns but generally do not attain near peak-performance unless the

matrix order is quite large; i.e., n _ 30 or greater.

The measured values of ta, at_ and flt_ are shown in Table A, along with derived

1

time

0.1

0.01

0.001

0.0001

I e-05

I I I I I

"R=4

.... _ _ nopt

rz _ _opt_

q=p

-.--.::::.£2

I I I I I

4 16 64 256 1024 4096

Number of processors - P

1

time

0.1

0.01

0.001

0.0001

le-05

I I I I I

- Tz_4

- .... "rz _ T_op t

I I f I I

4 16 64 256 1024 4096

Number of processors - P

Figure 2: Time per step for two-dimensional problem with truncation error of e -_ =

10 -3 (left) and 10 -6 (right).
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tr, (s)

10 -3

10 -4

i ,r,l_ /i i _ i i _11_ I j , , , i1,,[ _ , i r _rr,_ i , _ _ r,ll

SP2

Delta

10 _ 10 _ 10 2 I 0 3 10 a

m - message size (64-bit words)

Figure A: Measured round-trip message times, trt , for ping-pong test.

estimates for a and ft. Also listed is m2 = a//3, the characteristic message size

distinguishing short (latency-dominated) from long (bandwidth-limited) messages.

Table A: Machine dependent parameters 64-bit arithmetic

Machine ta (s) ata (s) /_t_ (s) a /3 m2

Delta 1.0xl0 -7 9.x10-5 1.1x10-6 900 11 80

Paragon .66x10 -T 5.x10-5 .15x10-6 760 2.3 330

SP2 .20×10 -_ 6.x10-5 .27x10-6 3000 15 200
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